Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anim Nutr ; 16: 231-240, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38362517

RESUMO

A comprehensive understanding of the role of dietary fibre in non-ruminant animal production is elusive. Equivocal and conflated definitions of fibre coupled with significant analytical complexity, interact with poorly defined host and microbiome relationships. Dietary fibre is known to influence gut development, feed intake and passage rate, nutrient absorption, microbiome taxonomy and function, gut pH, endogenous nutrient loss, environmental sustainability, animal welfare and more. Whilst significant gaps persist in our understanding of fibre in non-ruminant animal production, there is substantial interest in optimizing the fibre fraction of feed to induce high value phenotypes such as improved welfare, live performance and to reduce the environmental footprint of animal production systems. In order to achieve these aspirational goals, it is important to tackle dietary fibre with the same level of scrutiny as is currently done for other critical nutrient classes such as protein, minerals and vitamins. The chemical, mechanical and nutritional role of fibre must be explored at the level of monomeric sugars, oligosaccharides and polysaccharides of varying molecular weight and decoration, and this must be in parallel to standardisation of analytical tools and definitions for speciation. To further complicate subject, exogenous carbohydrases recognise dietary fibre as a focal substrate and have varying capacity to generate lower molecular weight carbohydrates that interact differentially with the host and the enteric microbiome. This short review article will explore the interactive space between dietary fibre and exogenous carbohydrases and will include their nutritional and health effects with emphasis on functional development of the gut, microbiome modulation and host metabolism.

2.
Poult Sci ; 102(4): 102563, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36871332

RESUMO

The objective of this study was to evaluate the variance of starch digestibility in broilers individually fed diets without or with supplemental exogenous amylase. A total of 120 d-of-hatch male chicks were individually reared from 5 to 42 d in metallic cages and fed maize-based basal diets or diets containing 80 kilo-novo-α-amylase units/kg (60 birds or replicates per treatment). Beginning on d 7, feed intake, body weight gain, and feed conversion ratio were recorded; partial excreta collection was conducted every Monday, Wednesday, and Friday until 42 d, when all birds were sacrificed for individual collection of duodenal and ileal digesta. Lower feed intake (4,675 vs. 4,815 g) and feed conversion ratio (1.470 vs. 1.508) were observed in amylase-fed broilers during the overall period (7-43 d; P < 0.01), whereas body weight gain was not affected. Amylase supplementation improved total tract starch (TTS) digestibility (P < 0.05) on each day of excreta collection (except for d 28, where no difference was found), averaging 0.982 vs. 0.973 compared to basal-fed broilers from d 7 to 42. Both apparent ileal starch (AIS) digestibility and apparent metabolizable energy (AMEN) were increased (P <0.05) from 0.968 to 0.976 and from 3,119 to 3,198 kcal/kg, respectively, with enzyme supplementation. Activity of amylase in the duodenum was higher (18.6 vs. 50.1 IU/g of digesta) in supplemented birds. Amylase supplementation led to a reduced coefficient of variation for both TTS (averaged 2.41 vs. 0.92% from 7 to 42 d) and AIS digestibilities (1.96 vs. 1.03%), as well as AMEN (0.49 vs. 0.35%), when compared to the nonsupplemented group, indicating lower individual heterogenity. An age effect was detected for TTS digestibility, as both groups saw an increase during the first weeks (slightly more pronounced in the supplemented group); older birds (d 30 onwards) presented a lower TTS digestibility compared to ages between 7 and 25 d. In conclusion, amylase supplementation in maize diets for broilers can attenuate individual bird variation for starch and energy utilization by increasing amylase activity and enhancing starch digestibility.


Assuntos
Galinhas , Amido , Animais , Masculino , Amilases/farmacologia , Digestão , Dieta/veterinária , Suplementos Nutricionais , Peso Corporal , Fenômenos Fisiológicos da Nutrição Animal , Ração Animal/análise
3.
J Nutr Metab ; 2019: 4983657, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30805214

RESUMO

Excessive energy intake is linked with obesity and subsequent diet-related health problems, and it is therefore a major nutritional challenge. Compared with the digestible carbohydrates starch and sugars, fiber has a low energy density and may have an attenuating effect on appetite. This narrative review attempts to clarify the net energy contributions of various fibers, and the effect of fiber on satiety and thus appetite regulation. Fibers, broadly defined as nonstarch polysaccharides, are a varied class of substances with vastly different physicochemical properties depending on their chemical arrangement. Thus, net energy content can vary from more than 10 kJ/g for soluble, nonviscous, and easily fermentable fibers such as those in many fruits, to less than zero for viscous fibers with anti-nutritive properties, such as certain types of fibers found in rye and other cereals. Likewise, some fibers will increase satiety by being viscous or contribute to large and/or swollen particles, which may facilitate mastication and increase retention time in the stomach, or potentially through fermentation and an ensuing satiety-inducing endocrine feedback from the colon. Thus, fibers may clearly contribute to energy balance. The metabolizable energy content is very often considerably lower than the commonly used level of 8 kJ per g fiber, and some fibers may reduce energy intake indirectly through satiety-inducing effects. A more precise characterization of fiber and its physicochemical effects are required before these beneficial effects can be fully exploited in human nutrition.

4.
Anim Nutr ; 3(1): 25-32, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29767124

RESUMO

Broilers that have early access to feed have been shown to have enhanced immune system and gut development and heightened resilience against necrotic enteritis (NE). This study examined the effect of early feeding a high amino acid density diet on performance of broilers under a sub-clinical NE challenge model. Ross 308 broilers (n = 576) were assigned to a 2 × 2 × 2 factorial design with 2 feeding regimes (feed access either within 6 h post-hatch or after 48 h post-hatch), 2 diets (control diet or the control diet with an additional 10% digestible amino acids [HAA]) and either presence or absence of NE challenge. Oral administrations of Eimeria species (d 9) and a field strain of Clostridium perfringens (d 14) were used to induce NE. Broiler performance was analysed at d 13, 23, 30 and 35. Intestinal lesion score and bacterial count were analysed on d 16. The NE challenge reduced overall bird performance and induced severe intestinal lesions, without causing notable mortality. At d 23 bird weight was significantly lower (P < 0.001) in the challenged birds compared with the unchallenged birds, but by d 30 the challenged birds had recovered and challenge no longer had an impact on bird performance. Birds fed the HAA diet had greater body weight by d 35 and heightened Lactobacillus content in the ileum at d 16 (P < 0.05). Birds that were fed the HAA diet after a period of fasting performed better in terms of feed conversion ratio (FCR) under challenge. The findings from this study suggest there are beneficial effects of feeding high amino acid diets to birds in response to external stresses, such as post-hatch fasting and subclinical NE.

5.
Front Vet Sci ; 3: 16, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26942187

RESUMO

The combined effect of environment and diet in shaping the gut microbiota remains largely unknown. This knowledge, however, is important for animal welfare and safe food production. For these reasons, we determined the effect of experimental units on the chicken cecum microbiota for a full factorial experiment where we tested the combined effect of room, diet, and antimicrobial treatment. By Illumina Deep sequencing of the 16S rRNA gene, we found that diet mainly affected the dominant microbiota, while the room as a proxy for environment had major effects on the non-dominant microbiota (p = 0.006, Kruskal-Wallis test). We, therefore, propose that the dominant and non-dominant microbiotas are shaped by different experimental units. These findings have implications both for our general understanding of the host-associated microbiota and for setting up experiments related to specific targeting of pathogens.

6.
J Nutr Metab ; 2015: 823081, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26199742

RESUMO

A high intake of sugars has been linked to diet-induced health problems. The fructose content in sugars consumed may also affect health, although the extent to which fructose has a particularly significant negative impact on health remains controversial. The aim of this narrative review is to describe the body's fructose management and to discuss the role of fructose as a risk factor for atherosclerosis, type 2 diabetes, and obesity. Despite some positive effects of fructose, such as high relative sweetness, high thermogenic effect, and low glycaemic index, a high intake of fructose, particularly when combined with glucose, can, to a larger extent than a similar glucose intake, lead to metabolic changes in the liver. Increased de novo lipogenesis (DNL), and thus altered blood lipid profile, seems to be the most prominent change. More studies with realistic consumption levels of fructose are needed, but current literature does not indicate that a normal consumption of fructose (approximately 50-60 g/day) increases the risk of atherosclerosis, type 2 diabetes, or obesity more than consumption of other sugars. However, a high intake of fructose, particularly if combined with a high energy intake in the form of glucose/starch, may have negative health effects via DNL.

7.
Antonie Van Leeuwenhoek ; 104(5): 609-18, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23975514

RESUMO

The microorganisms living in our gut have been a black box to us for a long time. However, with the recent advances in high throughput DNA sequencing technologies, it is now possible to assess virtually all microorganisms in our gut including non-culturable ones. With the use of powerful bioinformatics tools to deal with multivariate analyses of huge amounts of data from metagenomics, metatranscriptomics, metabolomics, we now start to gain some important insights into these tiny gut inhabitants. Our knowledge is increasing about who they are, to some extent, what they do and how they affect our health. Gut microbiota have a broad spectrum of possible effects on health, from preventing serious diseases, improving immune system and gut health to stimulating the brain centers responsible for appetite and food intake control. Further, we may be on the verge of being capable of manipulating the gut microbiota by diet control to possibly improve our health. Diets consisting of different components that are fermentable by microbiota are substrates for different kinds of microbes in the gut. Thus, diet control can be used to favor the growth of some selected gut inhabitants. Nowadays, the gut microbiota is taken into account as a separate organ in human body and their activities and metabolites in gut have many physiological and neurological effects. In this mini-review, we discuss the diversity of gut microbiota, the technologies used to assess them, factors that affect microbial composition and metabolites that affect human physiology, and their potential applications in satiety control via the gut-brain axis.


Assuntos
Biota , Dieta/métodos , Trato Gastrointestinal/microbiologia , Humanos
8.
Arch Anim Nutr ; 61(4): 276-91, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17760305

RESUMO

The effects of replacing soybean meal or fish meal with 2, 4 or 6% bacterial protein meal (BPM) on growth performance, ileal digestibility of amino acids and sensory quality of meat, were examined using 630 broiler chickens. Weight gain from 7-32 days of age did not differ significantly among the treatments. Efficiency of feed conversion was increased when BPM replaced soybean meal, and abdominal fat deposition tended to decline. Feed conversion was not affected when BPM replaced fish meal. Amino acid digestibility was unaffected or improved when BPM replaced soybean meal, whereas replacement of fishmeal with BPM resulted in similar digestibility. Sensory quality of fresh thigh meat was similar among treatments, but for freeze-stored chest meat replacement of fish meal with BPM reduced off-odour and off-flavour and increased juiciness. It was concluded that 6% BPM can replace soybean meal or fish meal protein in broiler chicken diets.


Assuntos
Ração Animal , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/farmacologia , Composição Corporal/efeitos dos fármacos , Galinhas/crescimento & desenvolvimento , Carne/normas , Aminoácidos/metabolismo , Fenômenos Fisiológicos da Nutrição Animal , Animais , Galinhas/metabolismo , Digestão , Relação Dose-Resposta a Droga , Produtos Pesqueiros , Íleo/metabolismo , Masculino , Distribuição Aleatória , Glycine max
9.
J Agric Food Chem ; 54(16): 5887-93, 2006 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-16881691

RESUMO

The optimal conditions for degradation of phytate (IP6, myo-inositol hexaphosphate) in a mixture of ground wheat and ground defatted soybeans (1:2, w/w) with added exogenous E. coli phytase were investigated at different temperatures (45, 60, 75, and 95 degrees C), moisture levels (25%, 35%, and 45%), and retention times (2-45 min). All treatment combinations were investigated in a small-scale mixer conditioner (experiment 1). The combined 45 degrees C and 45% moisture treatment was most efficient and reduced the content of IP6 by 86% during 45 min of incubation. This treatment combination was applied in a medium-scale mixer conditioner (experiment 2), and 76% reduction of IP6 at 45 min was obtained. During incubation, the content of lower groups of inositol phosphates, such as IP4 (myo-inositol tetraphosphate) and IP3 (myo-inositol triphosphate), increased significantly as the content of IP6 decreased. The major isomer formed was Ins(1,2,5,6)P(4).


Assuntos
Manipulação de Alimentos/métodos , Glycine max/química , Ácido Fítico/metabolismo , Triticum/química , 6-Fitase/metabolismo , Escherichia coli/enzimologia , Concentração de Íons de Hidrogênio , Temperatura , Fatores de Tempo , Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...